Existence and Uniqueness of Optimal Transport Maps

نویسندگان

  • FABIO CAVALLETTI
  • MARTIN HUESMANN
چکیده

Let (X, d,m) be a proper, non-branching, metric measure space. We show existence and uniqueness of optimal transport maps for cost written as non-decreasing and strictly convex functions of the distance, provided (X, d,m) satisfies a new weak property concerning the behavior of m under the shrinking of sets to points, see Assumption 1. This in particular covers spaces satisfying the measure contraction property. We also prove a stability property for Assumption 1: If (X, d,m) satisfies Assumption 1 and m̃ = g ·m, for some continuous function g > 0, then also (X, d, m̃) verifies Assumption 1. Since these changes in the reference measures do not preserve any Ricci type curvature bounds, this shows that our condition is strictly weaker than measure contraction property.

منابع مشابه

Existence, Uniqueness, and Regularity of Optimal Transport Maps

Adapting some techniques and ideas of McCann [8], we extend a recent result with Fathi [6] to yield existence and uniqueness of a unique transport map in very general situations, without any integrability assumption on the cost function. In particular this result applies for the optimal transportation problem on a n-dimensional non-compact manifold M with a cost function induced by a C2-Lagrang...

متن کامل

Existence and uniqueness of optimal maps on Alexandrov spaces

The purpose of this paper is to show that in a finite dimensional metric space with Alexandrov’s curvature bounded below, Monge’s transport problem for the quadratic cost admits a unique solution.

متن کامل

THE EXISTENCE AND UNIQUENESS OF THE SOLUTION OF THE SPECTRAL PROBLEM II

FOLLOING OUR PREVIOS PROJECT [1], WE ARE GOING TO PROVE THE EXISTENCE AND UNIQUENESS OF THE SOLUTION OF THE SPECTRAL PROBLEM IN THIS PROJECT.FIRST,WE HAVE PROVEN THE UNIQUENESS OF THE SOLUTION THEN TO PROVE THE EXISTRNCE WE CONSTENSS OF THE ADJOINT PROBLEM CORRESPONDING TO THIS SPECTRAL PROBLEM NEXT THE UNIQUESS OF THE ADJOINT PROBLEM IS THE EXISTENCE OF THE MAIN PROBLEM AS DISCUSSED BY[2] AND ...

متن کامل

Existence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations

‎In this paper‎, ‎we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations‎. ‎By a priori estimates‎, ‎difference and variation techniques‎, ‎we establish the existence and uniqueness of weak solutions of this problem.

متن کامل

Optimal Transport Maps in Monge-Kantorovieh Problem

In the first part of the paper we briefly decribe the classical problem, raised by Monge in 1781, of optimal transportation of mass. We discuss also Kantorovich's weak solution of the problem, which leads to general existence results, to a dual formulation, and to necessary and sufficient optimality conditions. In the second part we describe some recent progress on the problem of the existence ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014